Space weather: Impact on cascading power grid failures A simple model and illustration

Cecilia Larrosa, Lewis Kaneshiro, Jingjing Zhao
A student project supervised by
Elisabeth Paté-Cornell

Management Science and Engineering Stanford University

NASA Ames, October 15, 2011

Scope of the project

- Assess the effect of space weather on linked elements of the power grid in different states (predicted peak in 2013)
- Analyze the effects of grid operator actions on cascading grid failures, and identify grid management policies (production reductions) that are globally optimal for the different grids (states) involved

CAVEATS

- We are aware of the Optimal Power Flow (OPF) but do not use it explicitly.
- System operators are crucial to the formulation of OPF problems, but System Operators do not seem to like probabilistic models.
- We do not consider the introduction of natural/ renewable power mandated by government.
- We are aware of the industry accepted safety model called Security Constrained Optimal Power Flow (SCOPF), but to a large extent it does not seem to account for cascading effects.

Our (simple) models involved: Loads, capacities and economics

- Solar activity forecast
- Effects of solar activity and geomagnetic storms (loads) in different locations
- Warning system (satellites and magnetometers)
- The power grid system: a simplified representation of linked state grids (WA, OR, and CA)

Models (cont.)

- A simple model of grid performance (failure risks) and cascading effects
- Economic (benefits) optimization for each state's grid and for the whole system
- Optimal policy for a <u>set of US States</u> with grid interactions and potential cascading failures

Problem Overview

Solar Activity Forecast. Source: NOAA

Warning systems: "Solar Shield Project" & SUNBURST

- "Solar Shield Project " = Forecasting system for Geomagnetically Induced Currents (GIC)
 - By EPRI & NASA Goddard
 - Enhance SUNBURST: research tool used by US power industry
- Two forecast levels:
 - LEVEL 1: long lead time; 1-2 days. Based on remote solar observations and heliospheric magneto-hydrodynamic (MHD) simulations.
 - LEVEL 2: short lead time; 30-60 minutes. Based on in-situ L1 point solar wind observations and magnetospheric MHD simulations.

Loads: Flare Energy Frequency Distribution Source: C.J. Schrijver, Lockheed Martin, 2010

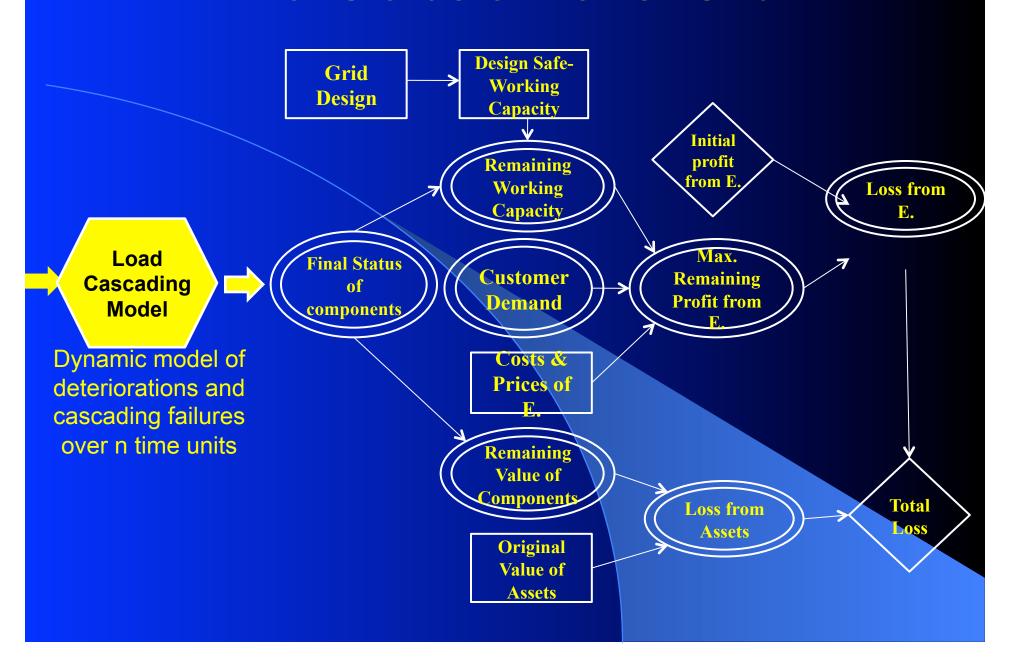
Solar Shield Grid Operator interface (warnings)

Left side: level 1 information so far. Right side: level 2 forecast

Effects of Solar Activity and Geomagnetic Storms

A simplified, schematic electric power grid

T: Transmission line


C: Consumer

Evolution of the Power Grid: initial state

Final Status of Power Grid

Optimization Example

Consumers, generators, transformers, lines and benefits

Grid performance model

- Pre-event normal performance:
 Electric path and distribution set so that
 Pre-event load < Maximum capacity (robustness)
- Failure under sudden GIC load:
 Pre-event load + sudden GIC load
 - > Maximum capacity (robustness)
 - => Component failures => cascading failures

Operation optimization

- Pre-event load distribution
 - Maximization of benefits:
 pre-event load < design safe-working capacity</p>
- Given a warning of a solar event (of magnitude Kp):
 - Operators lower capacity and re-rout flow
 So that event load still < safe-working capacity

Cascading failures dynamics simulation

- A network model
 - Nodes: generators, transformers, customers (G, T, L, C)
 - Links: Gen->Lines; Transf->Lines; Cust->Lines
- States of G, T, L: good, medium or bad (failure).
- Assumption: the state of each node is influenced only by the state of its neighbors (linked components)
- Interactions: conditional probabilities of failure given the state of neighboring nodes
- Transition probabilities for each component based on state of the neighbors (<u>simplification</u>: the highest probability of degradation implied by neighbors'states)

Algorithm

- Initial state: result of operator action
- At each time and for each component
 - Define component's current state
 - Define its conditional probabilities of degradation given the state of linked components
 - Build the degradation probability matrix
 - Identify the highest transition probability => determines the component's new state (at the next time) with probability 1
- Next time: repeat the algorithm with components in new state.

Effect of solar event size on cascading failures

What happens when grid operators in the different areas take different actions?

Action= Reduction of production.

Extreme action: reduction by 50% [0.5, 0.5, 0.5] in all 3 States (WA, OR, CA)

given a predicted solar storm of magnitude 9

Power grid system state simulated from time 1 to time 8 (=>state at time 8)

Comparing different actions State of the grids in step 1 and step 9

No action (full production): [1,1,1]

Extreme action: [.5.5.5], all grids react drastically (reduce production by 50%)

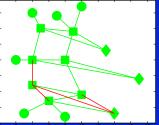
Independent action, e.g.: [.5, .7, 1]=> production in WA 50%, OR 70%, CA 100%

Next question: What is the best action for each grid operator that minimizes component loss and maximizes benefits for entire grid?

Effect of all possible actions:

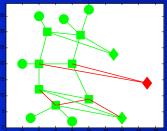
x axis: loss of components and remaining benefits as different measures (y axis: production levels)

are taken for a predicted storm of magnitude 9



Optimum action at the global level for a predicted storm of magnitude 9 oss of components and Remaining Profit as different actions are taken for a Ko

Comparing results (loss of grid in a storm of magnitude 9) for different actions by each State



No action: [1,1,1]

Extreme action: [.5,5,5], all grids react drastically

Optimal independent ("selfish") action: [.5 .7 1]

Optimum action (maximum benefits: [.5.7.7] =Oregon and California need to coordinate

Effects of optimal action for a magnitude 9

Conclusions/Future work

- The power grid system is very vulnerable if there is no warning of the solar event.
- The cascading degradation model needs to be further developed (this is a very simple model)
- Given a warning; It is important for each grid operator to communicate with others to avoid some damage
- Optimum action for a Kp9 event for the illustrative grid:

Washington .5, (reduction by 50%)

Oregon .7 (reduction by 30%)

California .7 (reduction by 30%)

The model can be applied to a global power grid to identify optimal actions. Then: implementation process/fund transfer?

Cascading failures model

- Each node G,T,L has 3 states: good (1), medium (2) and bad (3)

	g	m	b
g	1	1	1
m	0	1	1
b	0	0	1

- Each neighbor pair (A,C or A,B) has a transition probability

>				
C		g	m	b
	g	р	p	р
	m	р	р	Р
	b	р	p	р

>	>				
В	7 <u>1</u>	g	m	b	
	g	р	р	р	
	m	p	p	Р	
	b	р	р	р	

Information cascading model

S

Information cascading model

- Each node decides what state it will be by weighting the effect of

├				
C		g	m	b
	g	p1	p2	P3
	m	p4	р5	р6
	b	р7	р8	р9

→				
В	7 <u>N</u>	g	m	b
	g	q1	q2	q3
	m	q4	q5	q6
	b	q7	q8	q9

- At t-1, B was at m, C at b, A at $m \rightarrow state S = [1,2,3,...]$

- At t, A will have to make a decision based on the highest

	\triangle			
		ģ	m	b
B	m	c 4	q5	q6
\mathbf{C}	b	p ₁ 7	р8	р9
			Т	Tb
			m	

